Estimation of HF sire breeding values

(December 2018)

Production traits and somatic cell score ... 2
 Model .. 2
 Genetic base .. 3
 Reliability .. 3
 Publication criteria .. 3
F+2P index [kg] .. 3
Production subindex .. 3

Conformation ... 4
 Model .. 4
 Genetic base .. 5
 Reliability .. 5
 Publication criteria .. 5
Conformation subindexes .. 5

Female fertility ... 6
 Model .. 7
 Genetic base .. 7
 Reliability .. 7
 Publication criteria .. 7
Fertility subindex ... 7

Phenotypic characteristics of calving ease and calf mortality 8

Direct longevity ... 8
 Trait definition ... 8
 Model .. 8
 Genetic base .. 9
 Reliability .. 9
 Publication criteria .. 9
PF index .. 9

Genomic breeding values ... 11
 Data .. 11
 Model .. 11
 Direct Genomic Value (DGV) ... 11
 Genomic Enhanced Breeding Value (GEBV) .. 11
 Reliability .. 11
 Index and Subindexes .. 11
 Publication criteria .. 11
Production traits and somatic cell score

Model

Breeding values for production traits and somatic cell score are estimated according to a single-trait multi-lactation (limited to first three lactations) random regression test-day animal model:

\[Y_{ijklm} = HTD_i + \sum_{n=1}^{3} b_{jln} x_{jln} + \sum_{n=1}^{3} a_{kln} z_{kln} + \sum_{n=1}^{3} p_{kln} z_{kln} + e_{ijklm} \]

where:

- \(Y_{ijklm} \) is the yield of milk, fat, protein or SCS on test-date \(m \) of cow \(k \), in lactation \(l \),
- within herd-test date effect \(i \), belonging to the \(j \)-th class of calving age x calving season x breed of cow x class of calving year of lactation \(l \),
- \(HTD_i \) is fixed effect of the \(i \)-th herd-test-date,
- \(b_{jln} \) are fixed regression coefficients specific to subclass \(j \) of calving age x calving season x breed of cow x class of calving year for lactation \(l \),
- \(x_{jln} \) are terms of the Wilmink function,
- \(a_{kln} \) are random regression coefficients specific to the additive genetic effect of cow \(k \) in lactation \(l \),
- \(p_{kln} \) are random regression coefficients specific to the permanent environmental effect of cow \(k \) in lactation \(l \),
- \(z_{kln} \) are Legendre polynomials on days in milk (DIM),
- \(e_{ijklm} \) is residual effect for the test-day observation.

Heterogeneous herd variances are adjusted prior to the estimation of breeding values.

Breeding values for fat and protein percentage are calculated from the respective yields.

Data

Test-day yields included in the evaluation have been accumulated starting with cows that calved on January 1, 1995. Test-day yields from milk recording type AT4 have 80% weight compared to test days from A4 and A8 recordings.

Somatic cell count is transformed to somatic cell score with the following formula:

\[SCS = \log_2 \left(\frac{SCC}{100000} \right) + 3 \]

Genetic groups

Genetic groups are based on sex, birth year and HF percentage.

Adjustments for heterogeneous variance

Adjustments for heterogeneous variance within herds are applied.
Genetic parameters

Genetic parameters used in estimation of breeding values are presented in Table 1.

Table 1. Genetic parameters for lactational milk, fat and protein yields and SCS.

<table>
<thead>
<tr>
<th>Lactational</th>
<th>Milk</th>
<th>Fat</th>
<th>Protein</th>
<th>SCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.33</td>
<td>0.29</td>
<td>0.29</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Expression of genetic evaluation

Lactational breeding values for each of three lactations are obtained by summing up breeding values for days 5 to 305. Variances of second and third lactations are standardized to the first lactation variance; then the mean of lactational breeding values is calculated.

Genetic base

The average breeding value of cows born in 2010 was assumed as a fixed base.

Reliability

Reliabilities are calculated using multiple trait effective daughter contribution method.

Publication criteria

Reliability \(\geq 50\% \) and daughters in at least 10 herds.

F+2P index [kg]

\[
F+2P \text{ index [kg]} = BV \text{ Fat[kg]} + 2 \times BV \text{ Protein[kg]}
\]

Production subindex

\[
\text{Production subindex (PS)} = \text{RBV Fat[kg]} + 2 \times \text{RBV Protein[kg]}
\]

Breeding values for yield traits are expressed as relative breeding values (RBV) standardized with mean 100 and standard deviation 10. The genetic reference base was defined as the mean breeding value of bulls born in 2004-2006 with at least 20 daughters in 10 herds.

The production subindex is calculated based on Interbull breeding values. If Interbull BVs are not available, national BVs are used.
Conformation

Table 2 lists the evaluated descriptive and linear conformation traits.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Score</th>
<th>h²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>Size</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Type and conformation</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Feet and legs</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Udder</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Overall conformation</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Stature (cm)</td>
<td></td>
<td>(cm)</td>
</tr>
<tr>
<td>Body depth</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Chest width</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Rump angle</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Rump width</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Rear leg set side view</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Foot angle</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Rear leg set rear view</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Fore udder</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Rear udder height</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Udder support (central ligament)</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Udder depth</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Udder width</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Front teat placement</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Teat length</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Rear teat placement</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Dairy character</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

Model

Breeding values for conformation traits are estimated according to a single-trait BLUP animal model including random additive genetic effect of cow, fixed effect of genetic group, linear and quadratic regression on age at calving, fixed effect of herd-year-season-classifier, and fixed effect of lactation stage.

Breeding values are estimated for cows having known sires and calved between 18 and 48 months of age. Cows are scored between days 15 and 180 of first lactation. This period is divided into 11 intervals.

Genetic groups
Genetic groups are based on unknown parents, sex, birth year and HF percentage.

Breeding values

Breeding values for conformation traits are expressed as relative breeding values (RBV) standardized with mean 100 and standard deviation 10.

Genetic base

The genetic reference base for conformation traits was defined as the mean breeding value of bulls with at least 10 daughters in 5 herds.

Reliability

Reliability was approximated using selection index methodology.

Publication criteria

Published breeding values are based on at least 10 daughters.

Conformation subindexes

Table 3 lists five composite subindexes with assigned weights.

<table>
<thead>
<tr>
<th>Table 3. Conformation subindexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame subindex (FS)</td>
</tr>
<tr>
<td>Rump angle</td>
</tr>
<tr>
<td>Stature</td>
</tr>
<tr>
<td>Rump width</td>
</tr>
<tr>
<td>Chest width</td>
</tr>
<tr>
<td>Dairy strength subindex (DS)</td>
</tr>
<tr>
<td>Dairy character</td>
</tr>
<tr>
<td>Chest width</td>
</tr>
<tr>
<td>Body depth</td>
</tr>
<tr>
<td>Stature</td>
</tr>
<tr>
<td>Feet & legs subindex (FLS)</td>
</tr>
<tr>
<td>Foot angle</td>
</tr>
<tr>
<td>Rear leg set rear view</td>
</tr>
<tr>
<td>Rear leg set side view</td>
</tr>
<tr>
<td>Udder subindex (US)</td>
</tr>
</tbody>
</table>
Udder depth 35%
Fore udder 18%
Rear udder height 15%
Udder support (central ligament) 10%
Udder width 10%
Rear teat placement 6%
Front teat placement 3%
Teat length 3%

<table>
<thead>
<tr>
<th>Conformation subindex (CS)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Udder subindex (US)</td>
<td>50%</td>
</tr>
<tr>
<td>Feet & legs subindex (FLS)</td>
<td>30%</td>
</tr>
<tr>
<td>Dairy strength subindex (DS)</td>
<td>10%</td>
</tr>
<tr>
<td>Frame subindex (FS)</td>
<td>10%</td>
</tr>
</tbody>
</table>

Conformation subindexes are standardized with mean 100 and standard deviation 10. The genetic reference base was defined as the mean breeding value of bulls born in 2004-2006 with at least 20 daughters in 10 herds.

Subindexes FS, DS, FLS, and US are calculated based temporarily on national breeding values. If at least one of the national BVs is not available the corresponding subindex is calculated based only on Interbull BVs.

Female fertility

The following female fertility traits are evaluated:

- Conception rate, heifer CRh
- Conception rate, cow CRc
- Days between calving and first insemination CTFI
- Days open DO

Conception rates are coded as follows:

\[
CR = \frac{100}{\text{number of inseminations from the first to the last. If more than 15 inseminations were made or no insemination was marked as effective CR= 100/16.}}
\]

Table 4. Heritability (diagonal), genetic correlations (above diagonal) and phenotypic correlations (below diagonal) for fertility traits

<table>
<thead>
<tr>
<th>Trait</th>
<th>CRh</th>
<th>CRc</th>
<th>CTFI</th>
<th>DO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRh</td>
<td>0.027</td>
<td>0.483</td>
<td>0.581</td>
<td>-0.012</td>
</tr>
<tr>
<td>CRc</td>
<td>0.056</td>
<td>0.025</td>
<td>0.024</td>
<td>0.022</td>
</tr>
<tr>
<td>CTFI</td>
<td>-0.003</td>
<td>0.043</td>
<td>0.053</td>
<td>0.713</td>
</tr>
<tr>
<td>DO</td>
<td>-0.005</td>
<td>-0.215</td>
<td>0.609</td>
<td>0.080</td>
</tr>
</tbody>
</table>
Model

Breeding values for fertility traits are estimated by a multiple-trait BLUP animal model. The linear model for conception rates includes fixed effect of month of insemination, fixed regression on age of first insemination, random effect of herd-year of first insemination, and random additive genetic effect.

The linear model for days between calving and first insemination (CTFI) and days open (DO) includes fixed effects of herd-year and month of calving, regression on age at calving, and random additive genetic effect.

Breeding values for fertility traits are expressed as relative breeding values (RBV) standardized with mean 100 and standard deviation 10.

For CRh and CRC, greater breeding value means that, on average, fewer insemination are needed for the effective insemination of his daughters. Greater breeding values for CTFI and DO mean shorter intervals.

Genetic base

The genetic reference base was defined as the mean breeding value of bulls born in 2004-2006 with at least 50 daughters in 30 herds.

Reliability

Multiple-trait approximations

Publication criteria

Published breeding values are based on at least 10 daughters.

Fertility subindex

Fertility subindex \(FS = 0.7 \times CRh + 0.1 \times CRC + 0.1 \times CTFI + 0.1 \times DO \)

The fertility subindex is standardized with mean 100 and standard deviation 10.

The fertility subindex consists of CRh (if based on at least 10 effective daughters), CRC, CTFI and DO (with minimum repeatability of 0.10). In the case of young bulls, CRC, CTFI and DO are not available and breeding values are obtained from the multitrait model through genetic correlations.

The fertility subindex is calculated based on Interbull breeding values. If at least one of the Interbull BVs is not available the subindex is calculated based only on national BVs.
Phenotypic characteristics of calving ease and calf mortality

Calving ease

The phenotypic characteristics of calving ease of bull daughters (min. 50 daughters) and cows sired by the bull are coded as follows:

1. Without assistance
2. With assistance
3. With veterinary assistance
4. Difficult calving
5. Abortion
6. Caesarean section

Calf mortality

The phenotypic characteristics of calf mortality of bull daughters (min. 50 daughters) and cows sired by the bull are coded as follows:

1. Alive
2. Stillborn or died within 24h

Direct longevity

Trait definition

Functional longevity is defined as length of productive life measured by the number of days from first calving to culling (culling date) or censoring (last test-day date), adjusted for phenotypic production. Based on the disposal codes reported in the SYMLEK milk recording system, a longevity record is considered to be completed (uncensored) if the cow was culled for any reason other than being sold to another herd outside the milk recording system. Otherwise it is regarded as censored.

Model

Genetic evaluation of sires for functional longevity of their daughters is carried out using survival analysis methodology (Survival Kit 3.1) applying a mixed Weibull proportional hazard model (single-trait sire model).

The effects included in the model are random additive genetic sire effect (time-independent, following multivariate normal distribution, with variance-covariance matrix $A\sigma^2_s$), random time-dependent effect of herd-year-season (following log-gamma distribution), fixed time-independent effect of age at first calving, fixed time-dependent effect of lactation number x stage of lactation, fixed time-dependent effect of year-season, fixed time-dependent effect of yearly change of herd size, and fixed time-dependent effect of fat and protein yield relative to herd mean.
Table 5. Genetic and Weibull distribution parameters

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weibull</td>
<td>ρ</td>
<td>2.07</td>
</tr>
<tr>
<td></td>
<td>λ</td>
<td>0.007</td>
</tr>
<tr>
<td>HYS</td>
<td>γ</td>
<td>2.23</td>
</tr>
</tbody>
</table>

Genetic parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sire variance σ_s^2</td>
<td>0.0451</td>
</tr>
<tr>
<td>Heritability h_{orig}^2</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Breeding values for direct longevity are transformed (multiplied by -1) so that higher EBV indicates better longevity, and then expressed as relative breeding values (deviations from the base) standardized with mean 100 and standard deviation 10.

Genetic base

The genetic reference base was defined as the mean breeding value of bulls born in 2004-2006 with reliability \geq 50%.

Reliability

Approximate reliability R, derived from selection index theory, incorporates information from the bull and bull’s sire according to the formula:

$$R = \left(\frac{1}{4} \cdot R_{bs} + R_b - 2 \cdot \frac{1}{4} R_{bs} \cdot R_b \right) / \left(1 - \frac{1}{4} \cdot R_{bs} \cdot R_b \right)$$

where

- $R_b = N_b/(N_b + (4 - h^2)/h^2)$
- N_b - number of culled daughters of bull
- $R_{bs} = N_{bs}/(N_{bs} + (4 - h^2)/h^2)$
- N_{bs} - number of culled daughters of bull’s sire
- h^2 - heritability (0.19).

Publication criteria

Relative breeding values of bulls with at least 20% reliability are published.

PF index

The PF index (Production and Functional traits) is defined according to the following formula:

$$PF \text{ index} = 0.4 \cdot PS + 0.25 \cdot CS + 0.15 \cdot FS + 0.1 \cdot SCS + 0.1 \cdot LON$$

where:
PS Production subindex
CS Conformation subindex
FS Fertility subindex
SCS Somatic cell score RBV
LON Longevity RBV

All breeding values and indexes are standardized with mean 100 and standard deviation 10.
Genomic breeding values

Data

Genotypes were generated by the use of Illumina BovineSNP50 Genotyping BeadChip, which consists of 54,001 SNPs. The applied SNP selection criteria comprised polymorphism, expressed by the minor allele frequency (MAF), with the minimum MAF of 0.01, and technical quality of a SNP, expressed by the minimum call rate of 90% within the analyzed sample of bulls. Phenotypic data were deregressed national proofs of estimated breeding values (EBV), effective daughter contribution (EDC) and relationships. (Szyda et al., 2011)

Model

Direct Genomic Value (DGV)

Direct Genomic Value (DGV) is defined as the sum of additive effects of SNPs estimated from the linear mixed model with random additive SNP effects.

Genomic Enhanced Breeding Value (GEBV)

The genomic enhanced breeding values (GEBV) were calculated as a combination of direct genomic value (DGV) and the pedigree index (PI) using a selection index approach.

Reliability

Reliability of Direct Genomic Value (DGV).

The reliability of DGV is calculated based on the Interbull validation results and is expressed as the squared Pearson correlation coefficient between DGV and deregressed EBV (DRP) divided by the average reliability of bulls’s daughters EBV.

Reliability of Genomic Enhanced Breeding Value (GEBV).

The reliability of GEBV is a combination of reliabilities of DGV and PA using the selection index theory.

Index and Subindexes

Genomic enhanced breeding values (GEBV) are used to construct subindexes and the PF Index according to formulae previously described.

Publication criteria

Interbull genomic breeding values, if available, or national genomic breeding values with at least 50% reliability for milk production, are published.
References
